Consider the sets
$\phi, A=\{1,3\}, B=\{1,5,9\}, C=\{1,3,5,7,9\}$
Insert the symbol $\subset$ or $ \not\subset $ between each of the following pair of sets:
$A \ldots C$
Examine whether the following statements are true or false :
$\{ a\} \in \{ a,b,c\} $
State which of the following sets are finite or infinite :
$\{ x:x \in N$ and $x$ is odd $\} $
Make correct statements by filling in the symbols $\subset$ or $ \not\subset $ in the blank spaces:
$\{ x:x$ is an equilateral triangle in a plane $\} \ldots \{ x:x$ is a triangle in the same plane $\} $
Let $A=\{a, e, i, o, u\}$ and $B=\{a, b, c, d\} .$ Is $A$ a subset of $B ?$ No. (Why?). Is $B$ a subset of $A ?$ No. (Why?)