Are the following pair of sets equal ? Give reasons.
$A = \{ 2,3\} ,\quad \,\,\,B = \{ x:x$ is solution of ${x^2} + 5x + 6 = 0\} $
$A = \{ 2,3\} ,\quad \,\,\,B = \{ x:x$ is solution of ${x^2} + 5x + 6 = 0\} $
The equation $x^{2}+5 x+6=0$ can be solved as:
$x(x+3)+2(x+3)=0$
$(x+2)(x+3)=0$
$x=-2$ or $x=-3$
$\therefore A=\{2,3\} ; B=\{-2,-3\}$
$\therefore A \neq B$
Let $A=\{1,2,\{3,4\}, 5\} .$ Which of the following statements are incorrect and why ?
$\{\varnothing\} \subset A$
Write the solution set of the equation ${x^2} + x - 2 = 0$ in roster form.
Make correct statements by filling in the symbols $\subset$ or $ \not\subset $ in the blank spaces:
$\{ x:x$ is an even natural mumber $\} \ldots \{ x:x$ is an integer $\} $
Given the sets $A=\{1,3,5\}, B=\{2,4,6\}$ and $C=\{0,2,4,6,8\},$ which of the following may be considered as universal set $(s)$ for all the three sets $A$, $B$ and $C$
$\{0,1,2,3,4,5,6,7,8,9,10\}$
List all the elements of the following sers :
$F = \{ x:x$ is a consonant in the Englishalphabet which precedes $k\} $