Without finding the cubes, factorise $(x-y)^{3}+(y-z)^{3}+(z-x)^{3} .$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We know that $x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$

If $x+y+z=0,$ then $x^{3}+y^{3}+z^{3}-3 x y z=0$ or $x^{3}+y^{3}+z^{3}=3 x y z$

Here, $(x-y)+(y-z)+(z-x)=0$

Therefore, $(x-y)^{3}+(y-z)^{3}+(z-x)^{3}=3(x-y)(y-z)(z-x)$

Similar Questions

From the following polynomials find out which of them has $(x-1)$ as a factor

$x^{3}+4 x^{2}+x-6$

Classify the following polynomials as polynomials in one variable, two variables etc.

$x y+y z+z x$

If $x=2 y+6,$ then what is the value of $x^{3}-8 y^{3}-36 x y-216 ?$

Write the degree of the following polynomials

$7 x^{3}-9 x^{2}+4 x-22$

If $a+b+c=5$ and $a b+b c+c a=10,$ then prove that $a^{3}+b^{3}+c^{3}-3 a b c=-25.$