Without actually calculating the cubes, find the value of $48^{3}-30^{3}-18^{3}$
$77700$
$77760$
$70000$
$35730$
Verify whether the following are True or False:
$0$ and $2$ are the zeroes of $t^{2}-2 t.$
Write the degree of each of the following polynomials
$a x^{3}+b x^{2}+c x+d$
Factorise
$x^{2}+4 y^{2}+9 z^{2}-4 x y-12 y z+6 z x$
Without finding the cubes, factorise
$(x-2 y)^{3}+(2 y-3 z)^{3}+(3 z-x)^{3}$
State whether each of the following statements is true or false
$x^{2}-5 x+4$ is a linear polynomial.