Without actual division, prove that $2 x^{4}-5 x^{3}+2 x^{2}-x+2$ is divisible by $x^{2}-3 x+2$
We have,
$x^{2}-3 x+2=x^{2}-x-2 x+2$
$=x(x-1)-2(x-1)$
$=(x-1)(x-2)$
Let $p(x)=2 x^{4}-5 x^{3}+2 x^{2}-x+2$
Now, $\quad p(1)=2(1)^{4}-5(1)^{3}+2(1)^{2}-1+2=2-5+2-1+2=0$
Therefore, $(x-1)$ divides $p(x)$
And $\quad p(2)=2(2)^{4}-5(2)^{3}+2(2)^{2}-2+2$
$=32-40+8-2+2=0$
Therefore, $(x-2)$ divides $p ( x )$.
So, $(x-1)(x-2)=x^{2}-3 x+2$ divides $2 x^{4}-5 x^{3}+2 x^{2}-x+2$
Factorise :
$2 \sqrt{2} a^{3}+8 b^{3}-27 c^{3}+18 \sqrt{2} a b c$
Evaluate
$(555)^{2}$
Find the quotient and the remainder when $x^{3}+x^{2}-10 x+8$ is divided by
$x-2$
What should be added to $p(x)=x^{2}-8 x+10$ so that the resulting polynomial is divisible by $x-3 ?$
Without finding the cubes, factorise $(x-y)^{3}+(y-z)^{3}+(z-x)^{3} .$