Factorise :
$2 \sqrt{2} a^{3}+8 b^{3}-27 c^{3}+18 \sqrt{2} a b c$
We have,
$2 \sqrt{2} a^{3}+8 b^{3}-27 c^{3}+18 \sqrt{2} a b c$
$=\left\{(\sqrt{2} a)^{3}+(2 b)^{3}+(-3 c)^{3}-3(\sqrt{2} a)(2 b)(-3 c)\right\}$
$=\{\sqrt{2} a+2 b+(-3 c)\}\left\{(\sqrt{2} a)^{2}+(2 b)^{2}+(-3 c)^{2}-(\sqrt{2} a)(2 b)-(2 b)(-3 c)-(-3 c)(\sqrt{2} a)\right\}$
$=(\sqrt{2} a+2 b-3 c)\left(2 a^{2}+4 b^{2}+9 c^{2}-2 \sqrt{2} a b+6 b c+3 \sqrt{2} c a\right)$
Factorise the following:
$25 x^{2}+16 y^{2}+4 z^{2}-40 x y+16 y z-20 x z$
On dividing $p(x)=2 x^{3}-3 x^{2}+a x-3 a+9$ by $(x+1),$ if the remainder is $16,$ then find the value of $a$. Then, find the remainder on dividing $p(x)$ by $x+2$
Evaluate the following using suitable identities
$(107)^{2}$
Using suitable identity, evaluate the following:
$103^{3}$
Expand
$(3 x+5)^{2}$