Why is the probability of reaction with molecularity higher than three very rare ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The probability of reaction with molecularity having more then three colliding simultaneously is very small. Therefore the possibility of molecularity being three is very low.

Similar Questions

Reaction : $KCl{O_3} + 6FeS{O_4} + 3{H_2}S{O_4} \to $ $KCl + 3F{e_2}{\left( {S{O_4}} \right)_3} + 3{H_2}O$

Which is True $(T)$ and False $(F) $ in the following sentence ?

The reaction is complex.

The rate of the reaction $CC{l_3}CHO + NO \to CHC{l_3} + NO + CO$ is given by Rate $ = K\,[CC{l_3}CHO]\,[NO]$. If concentration is expressed in moles/litre, the units of K are

Write unit of rate constant of following reaction :

$1.$ $\frac {5}{2}$ order

$2.$  $n$ order

The experimental data for decomposition of $N _{2} O _{5}$

$\left[2 N _{2} O _{5} \rightarrow 4 NO _{2}+ O _{2}\right]$

in gas phase at $318 \,K$ are given below:

$t/s$ $0$ $400$ $800$ $1200$ $1600$ $2000$ $2400$ $2800$ $3200$
${10^2} \times \left[ {{N_2}{O_5}} \right]/mol\,\,{L^{ - 1}}$ $1.63$ $1.36$ $1.14$ $0.93$ $0.78$ $0.64$ $0.53$ $0.43$ $0.35$

$(i)$ Plot $\left[ N _{2} O _{5}\right]$ against $t$

$(ii)$ Find the half-life period for the reaction.

$(iii)$ Draw a graph between $\log \left[ N _{2} O _{5}\right]$ and $t$

$(iv)$ What is the rate law $?$

$(v)$ Calculate the rate constant.

$(vi)$ Calculate the half-life period from $k$ and compare it with $(ii)$.

${A_2} + {B_2} \to 2AB;R.O.R = k{[{A_2}]^a}{[{B_2}]^b}$

Initial $[A_2]$ Initial $[B_2]$ $R.O.R.\,(r)\,Ms^{-1}$
$0.2$ $0.2$ $0.04$
$0.1$ $0.4$ $0.04$
$0.2$ $0.4$ $0.08$

Order of reaction with respect to $A_2$ and $B_2$ are respectively