કેવી સ્પ્રિંગના દોલનો ઝડપી થશે? કડક કે મૃદુ.
સ્પ્રિંગ-દળના તંત્રને સમક્ષિતિજના બદલે શિરોલંબ રાખતાં તેના દોલનના આવર્તકાળમાં શું ફેરફાર થાય ?
$x=0$ ની આસપાસ $0.01 \;kg$ દળ ધરાવતો પદાર્થ નીચે દર્શાવેલ આકૃતિ મુજબ ગતિ કરે છે. આ સરળ આવર્ત ગતિનો આવર્તકાળ શોધો.
વિધાન સાયાં છે કે ખોટાં :
એક સ્પ્રિંગના બે સમાન ટુકડા કરતાં દરેક ટુકડાનો બળ અચળાંક ઘટે છે.
સ.આ. દોલકનું સ્થાનાંતર વધતાં પ્રવેગ ઘટે છે.
દોલિત થઈ શકે તેવાં તંત્રને એક કરતાં વધુ પ્રાકૃતિક આવૃત્તિઓ હોય છે.
સ.આ.ગ.નો આવર્તકાળ એ કંપવિસ્તાર અથવા ઊર્જા અથવા કળા-અચળાંક પર આધાર રાખે છે.
જ્યારે એક $m$ દળના કણને $k$ સ્પ્રિંગ અચળાંક ધરાવતી શિરોલંબ સ્પ્રિંગ સાથે જોડીને મુક્ત કરતાં તે $y ( t )= y _{0} \sin ^{2} \omega t $ મુજબ ગતિ કરે છે, જ્યાં $'y'$ એ ખેંચાયા વગરની સ્પ્રિંગની નીચેના ભાગેથી માપવામાં આવે છે. તો તેના માટે $\omega$ કેટલો હશે?
એક દઢ આધાર સાથે શિરોલંબ એક છેડેથી એક દળરહિત સ્પ્રિંગના છેડે $m$ દળનો પદાર્થ જોડેલો છે. પદાર્થને હાથ પર રાખેલ છે તેથી ધિંગ સંકોચાશે નહીં તેમજ પ્રસરશે પણ નહીં. એકાએક હાથનો આધાર દૂર કરવામાં આવે છે. જ્યારે હાથનો આધાર લઈ લેવામાં આવે છે તે સ્થાનથી લટકાવેલ દળના દોલનનું સૌથી નીચેનું સ્થાન $4\,cm$ નીચે મળે છે. $(a)$ દોલનનો કંપવિસ્તાર કેટલો ? $(b)$ દોલનની આવૃત્તિ શોધો.