ગણ સાન્ત કે અનંત છે તે નક્કી કરો : $\{ x:x \in N$ અને ${x^2} = 4\} $
$A=\{1,2,\{3,4\}, 5\}$ છે. વિધાન સત્ય છે કે અસત્ય છે ? શા માટે ? : $\{ 3,4\} \subset A$
ગણ $\{ (a,\,b):2{a^2} + 3{b^2} = 35,\;a,\,b \in Z\} $ એ . . . ઘટકો ધરાવે છે.
સમાન ગણની જોડી શોધો (જો હોય તો). તમારા ઉત્તર માટે કારણ આપો.
$A = \{ 0\} ,$
$B = \{ x:x\, > \,15$ અને $x\, < \,5\}, $
$C = \{ x:x - 5 = 0\} ,$
$D = \left\{ {x:{x^2} = 25} \right\},$
$E = \{ \,x:x$ એ સમીકરણ ${x^2} - 2x - 15 = 0$ નું ધન પૂર્ણાક બીજ છે. $\} $
ડાબી બાજુએ યાદીની રીતે દર્શાવેલ ગણોને જમણી બાજુએ તેના જ ગુણધર્મની રીતે દર્શાવેલા ગણો સાથે સાંકળો.
$(i)$ $\{1,2,3,6\}$ | $(a)$ $\{ x:x$ એ અવિભાજ્ય સંખ્યા છે અને $6$ નો અવયવ છે. $\} $ |
$(ii)$ $\{2,3\}$ | $(b)$ $\{ x:x$ એ $10$ કરતાં નાની અયુગ્મ પ્રાકૃતિક સંખ્યા છે. $\} $ |
$(iii)$ $\{ M , A , T , H , E , I , C , S \}$ | $(c)$ $\{ x:x$ એ પ્રાકૃતિક સંખ્યા છે અને $6$ નો અવયવ છે. $\} $ |
$(iv)$ $\{1,3,5,7,9\}$ | $(d)$ $\{ x:x$ એ $\mathrm{MATHEMATICS}$ શબ્દનો મૂળાક્ષર છે. $\} $ |