Which of the following pairs are not logically equivalent ?
$ \sim \left( { \sim p} \right)$ and $p$
$p\, \vee \,\left( {p\, \wedge \,q} \right)$ and $q$
$ \sim \,\left( {p\, \wedge \,q} \right)$ and $\left( { \sim p} \right)\, \vee \,\left( { \sim q} \right)$
$ \sim \left( { \sim p\, \wedge \,q} \right)$ and $\left( {p\, \vee \, \sim \,q} \right)$
The negative of $q\; \vee \sim (p \wedge r)$ is
If $p : 5$ is not greater than $2$ and $q$ : Jaipur is capital of Rajasthan, are two statements. Then negation of statement $p \Rightarrow q$ is the statement
If $p \Rightarrow (\sim p \vee q)$ is false, the truth values of $p$ and $q$ are respectively
Which of the following is not a statement
$\left(p^{\wedge} r\right) \Leftrightarrow\left(p^{\wedge}(\sim q)\right)$ is equivalent to $(\sim p)$ when $r$ is.