The negative of $q\; \vee \sim (p \wedge r)$ is
$\sim q\; \wedge \sim (p \wedge r)$
$\sim q \wedge (p \wedge r)$
$\sim q \vee (p \wedge r)$
None of these
The statement $(\mathrm{p} \wedge(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r})) \rightarrow \mathrm{r}$ is :
The negation of the compound statement $^ \sim p \vee \left( {p \vee \left( {^ \sim q} \right)} \right)$ is
The proposition $p \rightarrow \sim( p \wedge \sim q )$ is equivalent to
Given the following two statements :
$\left( S _{1}\right):( q \vee p ) \rightarrow( p \leftrightarrow \sim q )$ is a tautology.
$\left( S _{2}\right): \sim q \wedge(\sim p \leftrightarrow q )$ is a fallacy.
Then
The contrapositive of $(p \vee q) \Rightarrow r$ is