Which of the following are correct for any two complex numbers ${z_1}$ and ${z_2}$
$|{z_1}{z_2}|\, = \,|{z_1}||{z_2}|$
$arg\,\,({z_1}{z_2}) = (arg\,{z_1})(arg\,{z_2})$
$|{z_1} - {z_2}|\, \geqslant \,|{z_1}| - |{z_2}|$
$(a)$ and $ (c)$ both
Find the real numbers $x$ and $y$ if $(x-i y)(3+5 i)$ is the conjugate of $-6-24 i$
If $\frac{{z - \alpha }}{{z + \alpha }}\left( {\alpha \in R} \right)$ is a purely imaginary number and $\left| z \right| = 2$, then a value of $\alpha $ is
If $z_{1}=2-i, z_{2}=1+i,$ find $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|$
Find the modulus and argument of the complex numbers:
$\frac{1+i}{1-i}$
The argument of the complex number $\frac{{13 - 5i}}{{4 - 9i}}$is