$52$ પત્તાંઓમાંથી $4$ પત્તાં કેટલા પ્રકારે પસંદ કરી શકાય ? આમાંથી કેટલા પ્રકારની પસંદગીમાં, ચિત્રવાળાં પત્તાં હોય ?
There will be as many ways of choosing $4$ cards from $52$ cards as there are combinations of $52$ different things, taken $4$ at a time. Therefore
The required number of ways $=\,\,^{52} C _{4}=\frac{52 !}{4 ! 48 !}=\frac{49 \times 50 \times 51 \times 52}{2 \times 3 \times 4}$
$=270725$
There are $12$ face cards and $4$ are to be selected out of these $12$ cards. This can be done in $^{12} C _{4}$ ways.
Therefore, the required number of ways $=\frac{12 !}{4 ! 8 !}=495$
$'MISSISSIPPI'$ શબ્દના અક્ષરો વડે એક અથવા વધારે અક્ષરોવાળા કુલ કેટલા ભિન્ન સંચયો બનાવી શકાય ?
જો $^nP_4 = 30 ^nC_5,$ હોય તો $ n$ = ……
જો $\mathrm{m}, \mathrm{n} ;{ }^6 \mathrm{C}_{\mathrm{m}}+2\left({ }^6 \mathrm{C}_{\mathrm{m}+1}\right)+{ }^6 \mathrm{C}_{\mathrm{m}+2}>{ }^8 \mathrm{C}_3$ અને ${ }^{n-1} P_3:{ }^n P_4=1: 8$, ${ }^n P_{m+1}+{ }^{n+1} C_m$ ___________.
$6$ ભિન્ન અક્ષરો અંગ્રેજી મૂળાક્ષરોમાંથી આપેલા છે આ અક્ષરોના ઉપયોગથી ચાર અક્ષરોવાળા શબ્દો બનાવવામાં આવે છે તો એવા કેટલા શબ્દો બને કે જેમાં ઓછામાં ઓછા એક અક્ષરનું પુનરાવર્તન થાય સાથે બંને સરખા શબ્દો સાથે ન આવે ?
એક જૂથમાં $4$ કુમારીઓ અને $7$ કુમારી છે. જેમાં ઓછામાં ઓછો એક કુમાર અને એક કુમારી આવેલ હોય તો કેટલી ટુકડીઓ બનાવી શકાય.