What is the net force on the square coil
$25 \times {10^{ - 7}}\,N$ moving towards wire
$25 \times {10^{ - 7}}\,N$ moving away from wire
$35 \times {10^{ - 7}}\,N$ moving towards wire
$35 \times {10^{ - 7}}\,N$ moving away from wire
A straight wire of mass $200 \;g$ and length $1.5 \;m$ carrles a current of $2\; A$. It is suspended in mid-air by a uniform horizontal magnetic fleld $B$ (Figure). What is the magnitude of the magnetic fleld (in $T$)?
A current carrying rectangular loop PQRS is made of uniform wire. The length $PR = QS =5\,cm$ and $PQ = RS =100\,cm$. If ammeter current reading changes from I to $2 I$, the ratio of magnetic forces per unit length on the wire $P Q$ due to wire RS in the two cases respectively $f_{ PQ }^{ I }: f_{ PQ }^{2 I }$ is :
A straight wire $AB$ of mass $40\,g$ and length $50\,cm$ is suspended by a pair of flexible leads in uniform magnetic field of magnitude $0.40\,T$ as shown in the figure. The magnitude of the current required in the wire to remove the tension in the supporting leads is ...........$A$. (Take $g=10\,ms ^{-2}$ ).
The force exerted by a magnetic field on a wire having length $L$ and current $I$ is perpendicular to the wire and given as $\left| F \right| = IL\left| B \right|$ . An experimental plot shows $(\vec F)$ as function of $L$ . The plot is a straight line with a slope $S = \left( {10 \pm 1} \right) \times {10^{ - 5}}\ AT$. The current in the wire is $\left( {15 \pm 1} \right)\ mA$ . The percentage error in $B$ is
A single turn current loop in the shape of a right angle triangle with sides $5\,cm , 12\,cm , 13\,cm$ is carrying a current of $2\,A$. The loop is in a uniform magnetic field of magnitude $0.75\,T$ whose direction is parallel to the current in the $13\,cm$ side of the loop. The magnitude of the magnetic force on the $5\,cm$ side will be $\frac{ x }{130}\,N$. The value of $x$ is $..........$