A single turn current loop in the shape of a right angle triangle with sides $5\,cm , 12\,cm , 13\,cm$ is carrying a current of $2\,A$. The loop is in a uniform magnetic field of magnitude $0.75\,T$ whose direction is parallel to the current in the $13\,cm$ side of the loop. The magnitude of the magnetic force on the $5\,cm$ side will be $\frac{ x }{130}\,N$. The value of $x$ is $..........$
$8$
$7$
$9$
$6$
An infinitely long, straight conductor $AB$ is fixed and a current is passed through it. Another movable straight wire $CD$ of finite length and carrying current is held perpendicular to it and released. Neglect weight of the wire
A straight horizontal conducting rod of length $0.45\; m$ and mass $60\; g$ is suspended by two vertical wires at its ends. A current of $5.0 \;A$ is set up in the rod through the wires.
$(a)$ What magnetic field should be set up normal to the conductor in order that the tension in the wires is zero?
$(b)$ What will be the total tension in the wires if the direction of current is reversed keeping the magnetic field same as before? (Ignore the mass of the wires.) $g = 9.8\; m s^{-2}.$
Figure shows a conducting loop $A D C A$ carrying current $i$ and placed in a region of uniform magnetic field $B_0$. The part $A D C$ forms a semicircle of radius $R$. The magnitude of force on the semicircle part of the loop is equal to
A conductor in the form of a right angle $ABC$ with $AB = 3\, cm$ and $BC = 4\, cm$ carries a current of $10\, A$. There is a uniform magnetic field of $5\, T$ perpendicular to the plane of the conductor. The force on the conductor will be......$N$
Adjoining figure shows a very long semicylindrical conducting shell of radius $R$ and carrying a current $i$. An infinitely long straight current carrying conductor is lying along the axis of the semi-cylinder. If the current flowing through the straight wire be $i_0$, then the force per unit length on the conducting wire is