What is called Gaussian surface ?
The total charge enclosed in an incremental volume of $2 \times 10^{-9} \,{m}^{3}$ located at the origin is ...... $nC,$ if electric flux density of its field is found as $D=e^{-x} \sin y \hat{i}-e^{-x} \cos y \hat{j}+2 z \hat{k}\, C / m^{2}$
How does the electric field lines depend on area ?
An electric field $\overrightarrow{\mathrm{E}}=4 \mathrm{x} \hat{\mathrm{i}}-\left(\mathrm{y}^{2}+1\right) \hat{\mathrm{j}}\; \mathrm{N} / \mathrm{C}$ passes through the box shown in figure. The flux of the electric field through surfaces $A B C D$ and $BCGF$ are marked as $\phi_{I}$ and $\phi_{\mathrm{II}}$ respectively. The difference between $\left(\phi_{\mathrm{I}}-\phi_{\mathrm{II}}\right)$ is (in $\left.\mathrm{Nm}^{2} / \mathrm{C}\right)$
What will be the total flux through the faces of the cube as in figure with side of length $a$ if a charge $q$ is placed at ?
$(a)$ $A$ $:$ a corner of the cube.
$(b)$ $B$ $:$ midpoint of an edge of the cube.
The wrong statement about electric lines of force is