The wrong statement about electric lines of force is
These originate from positive charge and end on negative charge
They do not intersect each other at a point
They have the same form for a point charge and a sphere
They have physical existence
Electric flux through a surface of area $100$ $m^2$ lying in the $xy$ plane is (in $V-m$) if $\vec E = \hat i + \sqrt 2 \hat j + \sqrt 3 \hat k$
The figure shows two situations in which a Gaussian cube sits in an electric field. The arrows and values indicate the directions and magnitudes (in $N-m^2/C$) of the electric fields. What is the net charge (in the two situations) inside the cube?
A metallic shell has a point charge ‘$q$’ kept inside its cavity. Which one of the following diagrams correctly represents the electric lines of forces
Choose the incorrect statement :
$(a)$ The electric lines of force entering into a Gaussian surface provide negative flux.
$(b)$ A charge ' $q$ ' is placed at the centre of a cube. The flux through all the faces will be the same.
$(c)$ In a uniform electric field net flux through a closed Gaussian surface containing no net charge, is zero.
$(d)$ When electric field is parallel to a Gaussian surface, it provides a finite non-zero flux.
Choose the most appropriate answer from the options given below
Draw electric field by positive charge.