Verify whether the following are zeroes of the polynomial, indicated against them.
$p(x)=3 x^{2}-1,\,x=-\,\frac{1}{\sqrt{3}},\, \frac{2}{\sqrt{3}}$
If $x=\frac{-1}{\sqrt{3}}$ and $\sqrt{x=\frac{2}{\sqrt{3}}}$ are zeroes of polynomial $p ( x )=3 x ^{2}-1,$ then $p\left(\frac{-m}{l}\right)$
$p\left(\frac{-1}{\sqrt{3}}\right)$ and $p\left(\frac{2}{\sqrt{3}}\right)$ should be $0$
Here, $p\left(\frac{-1}{\sqrt{3}}\right)=3\left(\frac{-1}{\sqrt{3}}\right)^{2}-1=3\left(\frac{1}{3}\right)-1=1-1=0,$ and $p\left(\frac{2}{\sqrt{3}}\right)=3\left(\frac{2}{\sqrt{3}}\right)^{2}-1=3\left(\frac{4}{3}\right)-1=4-1=3$
Hence, $x=\frac{-1}{\sqrt{3}}$ is a zero of the given polynomial. However, $x=\frac{2}{\sqrt{3}}$ is not a zero of the given polynomial.
Verify whether the following are zeroes of the polynomial, indicated against them.
$p(x)=5 x-\pi, \,\,x=\frac{4}{5}$
Give one example each of a binomial of degree $35 $, and of a monomial of degree $100 $.
Without actually calculating the cubes, find the value of each of the following : $(28)^{3}+(-15)^{3}+(-13)^{3}$
Find the degree of the polynomials given : $2-y^{2}-y^{3}+2 y^{8}$
Evaluate the following products without multiplying directly : $95 \times 96$