Check whether the polynomial $q(t)=4 t^{3}+4 t^{2}-t-1$ is a multiple of $2 t+1$.
As you know, $q(t)$ will be a multiple of $2 t+1$ only, if $2 t+1$ divides $q(t)$ leaving remainder zero. Now, taking $2 t+1=0,$ we have $t=-\frac{1}{2}$
Also, $q\left(-\frac{1}{2}\right)=4\left(-\frac{1}{2}\right)^{3}+4\left(-\frac{1}{2}\right)^{2}-\left(-\frac{1}{2}\right)-1=-\frac{1}{2}+1+\frac{1}{2}-1=0$
So the remainder obtained on dividing $q(t)$ by $2 t+1$ is $0$ .
So, $2 t+1$ is a factor of the given polynomial $q(t),$ that is $q(t)$ is a multiple of $2 t+1$.
Find $p(0)$, $p(1)$ and $p(2)$ for of the following polynomials : $p(y)=y^{2}-y+1$
Find the value of the polynomial $5x -4x^2+ 3$ at $x = -\,1$.
Factorise : $x^{3}-2 x^{2}-x+2$
Factorise : $27 x^{3}+y^{3}+z^{3}-9 x y z$
Examine whether $x+2$ is a factor of $x^{3}+3 x^{2}+5 x+6$ and of $2 x+4$.