Determine which of the following polynomials has $(x + 1)$ a factor : $x^{4}+x^{3}+x^{2}+x+1$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

For $x+1=0,$ we have $x=-1$.

$\therefore $ The zero of $x+1$ is $-1$.

$\because$ $p ( x ) = x ^{4}+ x ^{3}+ x ^{2}+ x +1 $

$\therefore$ $p (-1) =(-1)^{4}+(-1)^{3}+(-1)^{2}+(-1)+1$

$=1-1+1-1+1=3-2=1$

$\because$ $f (-1)  \neq 0 $

$\therefore$ $p ( x )$ is not divisible by $x +1$.

Similar Questions

Factorise : $2 y^{3}+y^{2}-2 y-1$

Evaluate the following using suitable identities : $(102)^{3}$

Find the value of the polynomial $5x -4x^2+ 3$ at  $x = 0$.

Without actually calculating the cubes, find the value of each of the following : $(28)^{3}+(-15)^{3}+(-13)^{3}$

Verify whether the following are zeroes of the polynomial, indicated against them.

$p(x)=2 x+1, \,\,x=\frac{1}{2}$