The mean and standard deviation of $20$ observations are found to be $10$ and $2$ respectively. On rechecking, it was found that an observation $8$ was incorrect. Calculate the correct mean and standard deviation in each of the following cases:

If wrong item is omitted.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Number of observations (n) $=20$

Incorrect mean $=10$

Incorrect standard deviation $=2$

$\bar x = \frac{1}{n}\sum\limits_{i = 1}^{20} {{x_i}} $

$10 = \frac{1}{{20}}\sum\limits_{i = 1}^{20} {{x_i}} $

$ \Rightarrow \sum\limits_{i = 1}^{20} {{x_i}}  = 200$

That is, incorrect sum of observations $=200$

Correct sum of observations $=200-8=192$

$\therefore$ Correct mean $=\frac{\text { correct sum }}{19}=\frac{192}{19}=10.1$

Standard deviation $\sigma  = \sqrt {\frac{1}{n}\sum\limits_{i = 1}^n {{x_i}^2 - \frac{1}{{{n^2}}}{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} } $

$ = \sqrt {\frac{1}{n}\sum\limits_{i = 1}^n {x_i^2 - {{\left( {\bar x} \right)}^2}} } $

$ \Rightarrow 2 = \sqrt {\frac{1}{{20}}Incorrect\sum\limits_{i = 1}^n {x_i^2 - {{\left( {10} \right)}^2}} } $

$ \Rightarrow 4 = \frac{1}{{20}}Incorrect\sum\limits_{i = 1}^n {x_i^2 - 100} $

$ \Rightarrow Incorrect\sum\limits_{i = 1}^n {x_i^2 = 2080} $

$\therefore Correct\,\,\sum\limits_{i = 1}^n {x_i^2 = \,} Incorrect\,\,\sum\limits_{i = 1}^n {x_i^2 - {{\left( 8 \right)}^2}} $

$=2080-64$

$=2016$

$\therefore$ Correct standard deviation $=\sqrt{\frac{\text { Correct } \sum x_{i}^{2}}{n}-(\text { Correct mean })^{2}}$

$=\sqrt{\frac{2016}{19}-(10.1)^{2}}$

$=\sqrt{1061 \cdot 1-102 \cdot 1}$

$=\sqrt{4.09}$

$=2.02$

Similar Questions

For two data sets, each of size $5$, the variances are given to be $4$ and $5$ and the corresponding means are given to be $2$ and $4$, respectively. The variance of the combined data set is

  • [AIEEE 2010]

The $S.D$. of the first $n$ natural numbers is

Let the six numbers $a_1, a_2, a_3, a_4, a_5, a_6$ be in $A.P.$ and $a_1+a_3=10$. If the mean of these six numbers is $\frac{19}{2}$ and their variance is $\sigma^2$, then $8 \sigma^2$ is equal to

  • [JEE MAIN 2023]

The mean and variance of $7$ observations are $8$ and $16,$ respectively. If five of the observations are $2,4,10,12,14 .$ Find the remaining two observations.

Let $\mu$ be the mean and $\sigma$ be the standard deviation of the distribution 

$X_i$ $0$ $1$ $2$ $3$ $4$ $5$
$f_i$ $k+2$ $2k$ $K^{2}-1$ $K^{2}-1$ $K^{2}-1$ $k-3$

where $\sum f_i=62$. if $[x]$ denotes the greatest integer $\leq x$, then $\left[\mu^2+\sigma^2\right]$ is equal $.........$.

  • [JEE MAIN 2023]