मान लें व्योम में एक विध्युत क्षेत्र $\vec{E}=30 x^{2} \hat{i}$ है। तब विभवान्तर $V_{A}-V_{O}$ जहाँ $V_{O}$ मूलबिन्दु पर विभव एवं $V_{A}, x=2 \,m$ पर विभव ....$V$ है।
$-120$
$-80$
$80$
$120$
बिन्दु आवेश $100\,\mu C$ के कारण इससे $9$ मीटर की दूरी पर विद्युत विभव होगा
${q_1} = 2\,\mu C$ और ${q_2} = - 1\,\mu C$ के दो बिन्दु आवेश क्रमश: $x = 0$ और $x = 6$ बिन्दुओं पर स्थित हैं। विद्युत विभव निम्नलिखित बिन्दुओं पर शून्य होगा
एक पतले गोलीय कोश (shell) का केन्द्र उद्गम पर है व त्रिज्या $R$ है। उस पर धनावेश इस प्रकार वितरीत है कि पष्ठ-घनत्व एकसमान है। विधुत क्षेत्र के मान $|\vec{E}(r)|$ और विधुत -विभव $V(r)$ का , केन्द्र से दूरी $r$ के साथ बदलाव का सर्वोत्तम वर्णन किस ग्राफ में है।
$q$ परिमाण के दो विपरीत आवेश एक दूसरे से $2d$ दूरी पर रखे हैं। उनके बीच मध्य बिन्दु पर विभव होगा
x-अक्ष पर प्रत्येक बिन्दुओं $x = {x_0},\,x = 3{x_0},\,x = 5{x_0}$.....$\infty$ पर आवेश q रखा है एवं बिन्दुओं $x = 2{x_0},\,x = 4{x_0},x = 6{x_0}$, …$\infty$ पर दूसरा आवेश -q रखा है, यहाँ ${x_0}$ धनात्मक नियतांक है। यदि किसी आवेश $Q$ से $r$ दूरी पर विभव का मान $Q/(4\pi {\varepsilon _0}r)$ हो तो उपरोक्त आवेशों के निकाय के कारण मूल बिन्दु पर विभव होगा