$x$ એકમ સમાન મૂલ્યના અને એકબીજાને $45^o$ ના ખૂણે રહેલા બે સદિશો  નો પરિણામી સદિશ $\sqrt {\left( {2 + \sqrt 2 } \right)} $ એકમ હોય. તો $x$ નું મૂલ્ય શું થાય?

  • [AIIMS 2009]
  • A

    $0$

  • B

    $1$

  • C

    $\sqrt 2 $

  • D

    $2\sqrt 2 $

Similar Questions

સદિશ $\vec{A}$ અને $\vec{B}$ એવા છે કે જેથી $|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$ થાય. બે સદિશ વચ્ચેનો ખૂણો કેટલો હશે?

  • [AIIMS 2019]

જો $ \overrightarrow A ,\,\overrightarrow B $ and $ \overrightarrow C $ ના મૂલ્ય $12, 5$ અને $13$ હોય અને $ \overrightarrow A + \overrightarrow B = \overrightarrow C $ , તો સદિશ $ \overrightarrow A $ અને $ \overrightarrow B $ વચ્ચેનો ખૂણો કેટલો હશે?

કોલમ $-I$ ને કોલમ $-II$ સાથે જોડો.
કોલમ $-I$ કોલમ $-II$
$(1)$ બે સદિશોનું સંયોજન મહત્તમ  $(a)$ $180^o$
$(2)$ બે સદિશોનું સંયોજન ન્યૂનતમ $(b)$ $90^o$
  $(c)$ $0^o$

બે એકમ સદિશનો સરવાળો,એકમ સદિશ હોય, તો તેના બાદબાકી સદિશનું મૂલ્ય કેટલું થાય?

નીચે આપેલ કોલમ $-I$ માં સદિશો ,$\vec  a \,$ $\vec  b \,$  અને  $\vec  c \,$ વચ્ચેનો સંબંધ અને કોલમ $-II$ માં ,$\vec  a \,$ $\vec  b \,$  અને  $\vec  c \,$ સદિશો $XY$ સમતલમાં નમન સાથે દર્શાવેલ છે, તો કોલમ $-I$ અને કોલમ $-II$ ને સારી રીતે જોડો. 

 કોલમ $-I$  કોલમ $-II$
$(a)$ $\vec a \, + \,\,\vec b \, = \,\,\vec c $ $(i)$ Image
$(b)$ $\vec a \, - \,\,\vec c \, = \,\,\vec b$ $(ii)$ Image
$(c)$ $\vec b \, - \,\,\vec a \, = \,\,\vec c $ $(iii)$ Image
$(d)$ $\vec a \, + \,\,\vec b \, + \,\,\vec c =0$ $(iv)$ Image