Two vectors having equal magnitudes of $x\, units$ acting at an angle of $45^o$ have resultant $\sqrt {\left( {2 + \sqrt 2 } \right)} $ $units$. The value of $x$ is

  • [AIIMS 2009]
  • A

    $0$

  • B

    $1$

  • C

    $\sqrt 2 $

  • D

    $2\sqrt 2 $

Similar Questions

Two forces with equal magnitudes $F$ act on a body and the magnitude of the resultant force is $F/3$. The angle between the two forces is

Given $a+b+c+d=0,$ which of the following statements eare correct:

$(a)\;a, b,$ c, and $d$ must each be a null vector,

$(b)$ The magnitude of $(a+c)$ equals the magnitude of $(b+d)$

$(c)$ The magnitude of a can never be greater than the sum of the magnitudes of $b , c ,$ and $d$

$(d)$ $b + c$ must lie in the plane of $a$ and $d$ if $a$ and $d$ are not collinear, and in the line of a and $d ,$ if they are collinear ?

$ABC$ is an equilateral triangle. Length of each side is $a$ and centroid is point $O$. Find If $|\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{A C}|=n a$ then $n =$ ?

Which of the following is independent of the choice of co-ordinate system

A body is moving under the action of two forces ${\vec F_1} = 2\hat i - 5\hat j\,;\,{\vec F_2} = 3\hat i - 4\hat j$. Its velocity will become uniform under an additional third force ${\vec F_3}$ given by