पतले तार के दो छल्ले, जिनमें प्रत्येक की त्रिज्या $R$ है, अपने अक्षों को संपाती रखते हुए एक दूसरे से $d$ दूरी पर स्थित हैं। इन दोनों छल्लों के आवेश $ + q$ तथा $ - q$ हैं। दोनों छल्लों के केन्द्रों के बीच विभवान्तर है
Zero
$\frac{Q}{{4\pi {\varepsilon _0}}}\,\left[ {\frac{1}{R} - \frac{1}{{\sqrt {{R^2} + {d^2}} }}} \right]$
$QR/4\pi {\varepsilon _0}{d^2}$
$\frac{Q}{{2\pi {\varepsilon _0}}}\left[ {\frac{1}{R} - \frac{1}{{\sqrt {{R^2} + {d^2}} }}} \right]$
तीन समकेन्द्री गोलों की त्रिज्याएं $a , b$ और $c$ (जबकि $a < b < c$ है ) हैं और इनके तलीय आवेश घनत्व क्रमानुसार $\sigma,-\sigma$ और $\sigma$ हैं। यदि $V _{ A }, V _{ B }$ और $V _{ C }$ इन तीन गोलों के विभवों को सूचित करते हों, तो $c = a + b$ होने पर :-
एक साबुन के बुलबुले जिसका विभव $16\,V$ है, की त्रिज्या दुगनी कर दी जाये तो, बुलबुले का नया विभव ........$V$ हो जायेगा
$8$ सेमी भुजा के एक वर्ग के चारों कोनों पर $ + \frac{{10}}{3} \times {10^{ - 9}}C$ के आवेश में रखे गये हैं। विकर्णों के प्रतिच्छेद बिन्दु पर विभव होगा
$h$ ऊंचाई वाले निर्वातित (evacuated) एक बेलनाकार कक्ष के दोनों छोरों पर दो द्रढ़़ (rigid) चालक पट्टीकाएं हैं और उसका वक्रप्रष्ट अचालक है, जैसा की चित्र में दर्शाया गया है। कम भार वाली मुलायम पदार्थ से बनी हुयी कई गोलाकार गोलियाँ, जिनकी सतह पर एक चालक पदार्थ की परत चढ़ी है, नीचे वाली पट्टिका पर रखी हुई हैं। इन गोलियों की त्रिज्या $r \ll h$ है। अब एक उच्च वोल्टता का खोत $(HV)$ इस तरह से जोड़ा जाता है कि नीचे वाली पट्टिका पर $+V_0$ एवं ऊपर वाली पट्टिका पर $-V_0$ का विभव आ जाता है। चालक परत के कारण गोलियाँ आवेशित होकर पट्टिका के साथ समविभव हो जाती हैं जिसंके कोरण वे पट्टिका से प्रतिकर्षित होती हैं। अंततोगत्वा गोलियाँ ऊपरी पट्टिका से टकराती हैं, जहाँ पर गोलियों के पदार्थ की मुलायम प्रकृति के कारण प्रत्यवस्थान गुणांक (coefficient of restitution) को शून्य लिया जा सकता है। कक्ष में विद्युत क्षेत्र को समानान्तर पट्टिका वाले संधारित्र के समान माना जा सकता है। गोलियों की एक दूसरे से पारस्परिक क्रिया एवं टकराव को नगण्य माना जा सकता है। (गुरुत्वाकर्षण नगण्य है।)
निम्नलिखित में से कौनसा कथन सत्य है?
$(A)$ गोलियाँ ऊपरी पट्टिका पर चिपककर वहीं रह जाती हैं
$(B)$ गोलियाँ जिस आवेश के साथ ऊपर जाती हैं उसी आवेश के साथ उछल कर निचली पट्टिका पर वापस आ जाती हैं
$(C)$ गोलियाँ जिस्स आवेश के साथ ऊप्र जाती हैं उसके विपरीत आवेश के साथ उछलकर निचली पट्टिका पर वापूस आ जाती हैं
$(D)$ गोलियाँ दोनों पट्टिकाओं के बीच सरल आवर्त गति निष्पाद करेंगी
परिपथ में लगाए अमीटर में स्थायी अवस्था में औसत धारा
$(A)$ का मान शून्य होगा
($B$)$V_0$ के समानुपाती होगी
$(C)$ $V_0^{1 / 2}$ के समानुपाती होगी
$(D)$ $V_0^2$ के समानुपाती होगी
दिये गए सवाल का जवाब दीजिये ($1$) और ($2$)
धातुओं के बने हुए दो गोलाकार समकेन्द्रीय खोलों की त्रिज्या $R$ और $4 R$ है तथा इन पर क्रमश: $Q _{1}$ और $Q _{2}$ आवेश हैं। यदि दोनों खोलों पर सतहीय आवेश घनत्व (surface charge density) समान हो तो विभवान्तर $V ( R )- V (4 R )$ का मान है :