$K$ और $2K$ बल नियतांक की दो स्प्रिंग एक द्रव्यमान से चित्रानुसार जुड़ी हैं। द्रव्यमान के दोलनों की आवृत्ति है
$(1/2\pi )\sqrt {(K/m)} $
$(1/2\pi )\sqrt {(2K/m)} $
$(1/2\pi )\sqrt {(3K/m)} $
$(1/2\pi )\sqrt {(m/K)} $
एक स्प्रिंग का आवर्तकाल $T$ है। यदि इसे $n$ समान भागों में तोड़ दिया जाये तो प्रत्येक भाग का आवर्तकाल होगा
एक भार रहित स्प्रिंग जिसकी लम्बाई $60\, cm$ तथा बल नियंताक $100\, N/m$ है, किसी चिकनी मेज पर मुक्त अवस्था में सीधी रखी है। इसके दोनों सिरे दृढ़तापूर्वक बँधे हैं। $0.25\, kg$ द्रव्यमान को स्प्रिंग के मध्य में जोड़कर लम्बाई के अनुदिश थोड़ा सा विस्थापित किया जाता है, तो द्रव्यमान का दोलनकाल है
एक क्षैतिज कमानी से बँधा एक द्रव्यमान $M$, आयाम $A_{1}$ से सरल आवर्त गति कर रहा है। जब द्रव्यमान $M$ अपनी माध्य अवस्था से गुजर रहा है, तब एक छोटा द्रव्यमान $m$ इसके ऊपर रख दिया जाता है और अब दोनों आयाम $A_{2}$ से गति करते हैं। $\left(\frac{A_{1}}{A_{2}}\right)$ का अनुपात है:
एक $m$ द्रव्यमान की वस्तु श्रेणीक्रम में जुडी हुई ${k_1}$ एवं ${k_2}$ बल नियतांक की स्प्रिंगों से लटकी हुई है। वस्तु का दोलनकाल होगा
आरेख में दर्शाए अनुसार कमानी स्थिरांक $'2k'$ की दो सर्वसम कमानियाँ द्रव्यमान $m$ के किसी गुटके और दढ़ सपोर्ट से जुड़ी हैं। जब इस गुटके को इसकी साम्यावस्था से किसी एक ओर विस्थापित किया जाता है तो सरल आवर्त गति करने लगता है। इस निकाय के दोलन का आवर्तकाल होगा।