બે સમાન વાહક ગોળાઓ $A$ અને $B$ એકબીજાથી $5 \;cm$ અંતરે મૂકેલા છે તથા સમાન રીતે વિદ્યુતભારીત કરેલાં છે. તેમની ત્રિજ્યાઓ અનુક્રમે $1\; mm$ અને $2 \;mm$ છે. જો બંને ગોળાને વાહકતાર વડે જોડવામાં આવે, તો સંતુલિત સ્થિતિમાં ગોળા $A$ અને $B$ ની સપાટી પરનાં વિદ્યુતક્ષેત્રોનો ગુણોત્તર કેટલો થાય?
$4 : 1$
$1:2$
$2:1$
$1:4$
$R$ અને $2R$ ત્રિજ્યા ધરાવતા બે અલગ કરેલા ધાત્વીય ગોળાઓને એવી રીતે વિદ્યુતભારિત કરવામાં આવે છે કે જેથી તરો સમાન વિદ્યુતભાર ઘનતા $\sigma$ હોય. આ બંને ગોળાઓને ત્યારબાદ પાતળા સુવાહક તારથી જોડવામાં આવે છે, ધારો કે મોટા ગોળા પરની નવી વિદ્યુતભાર ઘનતા $\sigma^{\prime}$ હોય તો, ગુણોતર $\frac{\sigma^{\prime}}{\sigma}=.......$ થશે.
$a$ અને $b$ ત્રિજ્યા ધરાવતા બે વિદ્યુતભારીત ગોળાઓને તાર વડે જોડેલા હોય, ત્યારે તેઓની સપાટી પર વિદ્યુત ક્ષેત્રનો ગુણોત્તર $E_a/E_b$ છે. તો.....
અંદર ત્રિજ્યા $r_{1}$ અને બહારની ત્રિજ્યા $r_{2}$ ધરાવતી એક ગોળાકાર સુવાહક કવચ પરનો વિધુતભાર $Q$ છે.
$(a)$ કવચના કેન્દ્ર પર વિધુતભાર $q$ મૂકવામાં આવે છે. કવચની અંદરની અને બહારની સપાટિઓ પર વિધુતભારની પૃષ્ઠઘનતા કેટલી હશે ?
$(b)$ જો કવચ ગોળાકાર ન હોય પર ગમે તેવો અનિયમિત આકાર ધરાવતી હોય તો પણ બખોલ ( જેમાં કોઈ વિધુતભાર નથી ) ની અંદરનું વિધુતક્ષેત્ર શૂન્ય છે ? સમજાવો.
સ્થાયી સ્થિતિમાં સુવાહકના અંદરના ભાગમાં વધારાનો વિધુતભાર હોઈ શકે નહીં. સમજાવો.
પૃથ્વીનું વિદ્યુતસ્થિતિમાન શૂન્ય લેવામાં આવે છે કારણ કે પૃથ્વી સારું .........