Two spherical conductors $A$ and $B$ of radii $1\ mm$ and $2\  mm$ are separated by a distance of $5\ cm$ and are uniformly charged. If the spheres are connected by a conducting wire then in equilibrium condition, the ratio of the magnitude of the electric fields at the surfaces of spheres $A$ and $B$ is

  • [AIEEE 2006]
  • A

    $4 : 1$

  • B

    $1:2$

  • C

    $2:1$

  • D

    $1:4$

Similar Questions

A conducting sphere of radius $r$ has a charge. Then

A spherical conducting shell of inner radius $r_1$ and outer radius $r_2$ has a charge $Q. $

$(a)$ A charge $q$ is placed at the centre of the shell. What is the surface charge density on the inner and outer surfaces of the shell?

$(b)$ Is the electric field inside a cavity (with no charge) zero, even if the shell is not spherical, but has any irregular shape? Explain.

Two metal spheres, one of radius $R$ and the other of radius $2R$, both have same surface charge density $\sigma $. They are brought in contact and separated. What will be new surface charge densities on them ?

A solid spherical conducting shell has inner radius a and outer radius $2a$. At the center of the shell is located a point charge $+Q$. What must the excess charge of the shell be in order for the charge density on the inner and outer surfaces of the shell to be exactly equal ?

Obtain the relation between electric field and electric potential.