समान त्रिज्याओं के दो गोलाकार चालकों $B$ एवं $C$ पर आवेश की मात्रा समान है तथा उन्हें एक-दूसरे से कुछ दूर रखने पर उनके बीच लगने वाला प्रतिकर्षण बल $F$ है । उतनी ही त्रिज्या वाले एक अन्य अनावेशित चालक का संपर्क पहले $B$ से कराते हैं और फिर $C$ से संपर्क कराकर उसे हटा दिया जाता है । $B$ तथा $C$ के बीच लगने वाला बल अब कितना होगा
$F/4$
$3F/4$
$F/8$
$3F/8$
समान त्रिज्या के दो धातु के गोलाकार हैं, परन्तु एक ठोस एवं दूसरा खोखला है, तो
लम्बाई $l$ की दो द्रव्यमानहीन डोरियो द्वारा एक उभयनिष्ठ बिन्दु से दो एकसमान आवेशित गोले लटकाये गये है, जों कि प्रारम्भ में दूरी $d(d$ $ < < l)$ पर अपनें अन्योन्य विकषर्ण के कारण है। दोंनों गोलों से आवेश एक स्थिर दर से लीक होना प्रारम्भ करता है। इसके परिणाम स्वरूप आवेश एक दूसरे की ओर $v$ वेग से गति करना प्रारम्भ करते है। तब दोनों के बीच दूरी $x$ के फलन के रूप में
चार आवेश $Q_1, Q_2, Q_3$, तथा $Q_4$, जिनका मान समान है, $x$ अक्ष के अनुदिश क्रमशः $x=-2 a,-a,+a$ तथा $+2 a$ पर रखे हैं। एक अन्य धनावेश $q,+y$ अक्ष पर $b > 0$ दूरी पर रखा है। आवेशों के चिहृन (sign) के चार विकल्प सूची-$I$ में दिए है। आवेश $q$ पर लगने वाले बलों की दिशा सूची-$II$ में दी गई है। सूची-$I$ को सूची-$II$ से सुमेलित कीजिए तथा सूचियों के नीचे दिये गए कोड का प्रयोग करके सही विकल्प चुनिए :
सूची-$I$ | सूची-$II$ |
$P.$ $\quad Q _1, Q _2, Q _3, Q _4$, सभी धनावेश है। | $1.\quad$ $+ x$ |
$Q.$ $\quad Q _1, Q _2$ धनावेश है $Q _3, Q _4$ ॠणावेश है। | $2.\quad$ $-x$ |
$R.$ $\quad Q _1, Q _4$ धनावेश है $Q _2, Q _3$ ॠणावेश है। | $3.\quad$ $+ y$ |
$S.$ $\quad Q _1, Q _3$ धनावेश है $Q _2, Q _4$ ॠणावेश है। | $4.\quad$ $-y$ |
दो एकसमान धात्विक गोले $A$ और $B$ जब हवा में एक निश्चित दूरी पर रखे जाते है तो एक-दूसरे को $F$ बल से प्रतिकर्षित करते हैं। एक और समरूप अनावेशित गोला $C$, पहले $A$ के सम्पर्क में, फिर $B$ के सम्पर्क में और अंत में $A$ और $B$ के मध्य बिन्दू पर रखा जाता है। गोले $C$ द्वारा अनुभव किया बल होगा :
$4\,\mu\,C$ के किसी आवेश को, दो आवेशों में विभाजित किया जाता है। विभाजित आवेशों के बीच की दूरी नियत है। यदि उनके बीच में अधिकतम बल लग रहा है, तो विभाजित आवेशों का परिमाण होगा :