Two spherical conductors $B$ and $C$ having equal radii and carrying equal charges in them repel each other with a force $F$ when kept apart at some distance. A third spherical conductor having same radius as that of $B$ but uncharged is brought in contact with $B$, then brought in contact with $C$ and finally removed away from both. The new force of repulsion between $B$ and $C$ is
$F/4$
$3F/4$
$F/8$
$3F/8$
A $10\,\mu C$ charge is divided into two parts and placed at $1\,cm$ distance so that the repulsive force between them is maximum. The charges of the two parts are :
What is the net force on a $Cl^{-}$ placed at the centre of the bcc structure of $CsCl$
Two identical spheres each of radius $R$ are kept at center-to-center spacing $4R$ as shown in the figure. They are charged and the electrostatic force of interaction between them is first calculated assuming them point like charges at their centers and the force is also measured experimentally. The calculated and measured forces are denoted by $F_c$ and $F_m$ respectively.
($F_c$ and $F_m$ denote magnitude of force)
Coulomb's law for electrostatic force between two point charges and Newton's law for gravitational force between two stationary point masses, both have inverse-square dependence on the distance between the charges and masses respectively.
$(a)$ Compare the strength of these forces by determining the ratio of their magnitudes $(i)$ for an electron and a proton and $(ii)$ for two protons.
$(b)$ Estimate the accelerations of electron and proton due to the electrical force of their mutual attraction when they are $1 \mathring A \left( { = {{10}^{ - 10}}m} \right)$ apart? $\left(m_{p}=1.67 \times 10^{-27} \,kg , m_{e}=9.11 \times 10^{-31}\, kg \right)$
A point charge of $40$ stat coulomb is placed $2$ $cm$ in front of an earthed metallic plane plate of large size. Then the force of attraction on the point charge is.....$dynes$