दो धनात्मक आवेश वाले गोले जिनका द्रव्यमान $m_1$ तथा $m_2$ है, छत पर उभय बिन्दु से एकसमान कुचालक भारहीन डोरी, जिसकी लंबाई $l$ है, से लटके हुए हैं। दोनों गोलों का आवेश क्रमश: $q_1$ तथा $q_2$ है। साम्यावस्था में दोनों गोलों की डोरियाँ ऊर्ध्वाधर से समान कोण $\theta$ बनाती हैं। तब
$q_1 m_1=q_2 m_2$
$m_1=m_2$
$m_1=m_2 \sin \theta$
$q_2 m_1=q_1 m_2$
एक वैद्युत आवेश ${q_1}$, एक अन्य आवेष ${q_2}$ पर बल आरोपित करता है। यदि एक तृतीय आवेष ${q_3}$ निकट लाया जाता है, तो आवेष ${q_1}$ द्वारा आवेश ${q_2}$ पर लगने वाला बल
दो समान टेनिस बॉलों को, जिनमें प्रत्येक का द्रव्यमान $'m'$ और आवेश $'q'$ है को $'l'$ लम्बाई के धागों के साथ एक स्थिर बिन्दु से लटकाया गया है। यदि प्रत्येक धागा, ऊर्ध्वाधर से छोटा कोण $'\theta'$ बनाए तो साम्यावस्था में धागों के बीच पथकन का मान होगा।
दो बिन्दु आवेश (प्रत्येक $Q$ ) को $d$ दूरी पर रखा गया है। एक तीसरे बिन्दु आवेश $q$ को मध्य बिन्दु से लंब समद्विभाजक पर $x$ दूरी पर रखा गया है। $x$ का मान क्या हो जिस पर आवेश $q$ पर अधिकतम कूलॉम बल लगे:
$Q$ कूलॉम का आवेश एक ठोस धातु के टुकड़े पर जिसका अनियमित आकार है, रखा हुआ है। आवेश का वितरण होगा
एक सरल लोलक के धात्विक गोलक पर ऋणावेश है तथा लोलक का आवर्तकाल $T$ है। यदि इसे धनावेशित धात्विक प्लेट के ऊपर दोलित किया जाये तो इसका आवर्तकाल होगा