दो छोटी गेंदें जिनमें प्रत्येक पर $ + Q$ कूलॉम धन आवेश है, एक स्टैण्ड के हुक से बराबर लम्बाई $L$ मीटर की दो विद्युतरोधी डोरियों से लटकाई गई हैं। इस समायोजन को एक उपग्रह में रखकर अंतरिक्ष में जहाँ गुरुत्वाकर्षण नहीं है, ले जाया जाता है। दोनों डोरियों के बीच कोण तथा डोरियों में तनाव होगा
${180^o},\,\frac{1}{{4\pi {\varepsilon _0}}}\frac{{{Q^2}}}{{{{(2L)}^2}}}$
${90^o},\,\frac{1}{{4\pi {\varepsilon _0}}}\frac{{{Q^2}}}{{{L^2}}}$
${180^o},\,\frac{1}{{4\pi {\varepsilon _0}}}\frac{{{Q^2}}}{{2{L^2}}}$
${180^o},\,\frac{1}{{4\pi {\varepsilon _0}}}\frac{{{Q^2}}}{{{L^2}}}$
दो समान आवेश $Q$ परस्पर कुछ दूरी पर रखे हैं इनको मिलाने वाली रेखा के केन्द्र पर $q$ आवेश रखा गया है। तीनों आवेशों का निकाय सन्तुलन में होगा यदि $q$ का मान हो
बिन्दु आवेश $ + 4q,\, - q$ एवं $ + 4q$ , $X - $अक्ष के बिन्दुओं $x = 0,\,x = a$ एवं $x = 2a$ पर रखे हैं, तो
$(a)$ दो विध्यूतरोधी आवेशित ताँबे के गोलों $A$ तथा $B$ के केंद्रों के बीच की दूरी $50 \,cm$ है। यद् दोनों गोलों पर पृथक-पृथक आवेश $6.5 \times 10^{-7} C$ हैं, तो इनमें पारस्परिक स्थिरवैध्यूत प्रतिकर्षण बल कितना है? गोलों के बीच की दूरी की तुलना में गोलों $A$ तथा $B$ की त्रिज्याएँ नगण्य हैं।
$(b)$ यदि प्रत्येक गोले पर आवेश की मात्रा दो गुनी तथा गोलों के बीच की दूरी आधी कर दी जाए तो प्रत्येक गोले पर कितना बल लगेगा?
चित्रानुसार एक आवेश $+q$ ' $L$ 'आकार की भूसम्पर्कित एक चालक पट्टी के दोनों भागों से ' $d$ ' दूरी पर स्थित है. आवेश $+q$ पर कार्यरत बल
प्रत्येक $2\,\mu C$ के दो आवेश एक दूसरे से $0.5$ मीटर की दूरी पर स्थित हैं। यदि दोनों निर्वात में उपस्थित हों तो उनके मध्य बल........$N$ होगा