Two small spheres each having the charge $ + Q$ are suspended by insulating threads of length $L$ from a hook. This arrangement is taken in space where there is no gravitational effect, then the angle between the two suspensions and the tension in each will be
${180^o},\,\frac{1}{{4\pi {\varepsilon _0}}}\frac{{{Q^2}}}{{{{(2L)}^2}}}$
${90^o},\,\frac{1}{{4\pi {\varepsilon _0}}}\frac{{{Q^2}}}{{{L^2}}}$
${180^o},\,\frac{1}{{4\pi {\varepsilon _0}}}\frac{{{Q^2}}}{{2{L^2}}}$
${180^o},\,\frac{1}{{4\pi {\varepsilon _0}}}\frac{{{Q^2}}}{{{L^2}}}$
Two equal negative charge $-q$ are fixed at the fixed points $(0,\,a)$ and $(0,\, - a)$ on the $Y$-axis. A positive charge $Q$ is released from rest at the point $(2a,\,0)$ on the $X$-axis. The charge $Q$ will
A charge of $4\,\mu C$ is to be divided into two. The distance between the two divided charges is constant. The magnitude of the divided charges so that the force between them is maximum, will be.
If two charges $q _1$ and $q _2$ are separated with distance ' $d$ ' and placed in a medium of dielectric constant $K$. What will be the equivalent distance between charges in air for the same electrostatic force?
Two spheres $A$ and $B$ of radius $4\,cm$ and $6\,cm$ are given charges of $80\,\mu c$ and $40\,\mu c$ respectively. If they are connected by a fine wire, the amount of charge flowing from one to the other is
Equal charges $q$ are placed at the four corners $A,\,B,\,C,\,D$ of a square of length $a$. The magnitude of the force on the charge at $B$ will be