$3 ×10 ^{-6}\, C$ एवं $8 ×10 ^{-6} \, C$ के दो बिन्दु आवेश एक दूसरे को $ 6 ×10^{-6}\, N$ के बल से प्रतिकर्षित करते हैं। यदि प्रत्येक को $-6 ×10 ^{-6}\, C$ का अतिरिक्त आवेश दे दिया जाये तो इनके मध्य बल होगा
$2.4 \times 10^{-3} \, N$ (आकर्षण)
$2.4 \times 10^{-9} \, N$ ((आकर्षण)
$1.5 \times 10^{-3} \, N$ (प्रतिकर्षण)
$1.5 \times 10^{-3}\, N$ (आकर्षण)
चित्रानुसार एक आवेश $+q$ ' $L$ 'आकार की भूसम्पर्कित एक चालक पट्टी के दोनों भागों से ' $d$ ' दूरी पर स्थित है. आवेश $+q$ पर कार्यरत बल
$10^{-4}$ मी. $^2$ अनुप्रस्थ परिच्छेद क्षेत्रफल वाले एक धातु के पतले तार का प्रयोग करके $30$ सेमी. त्रिज्या का एक छल्ला (रिंग) बनाया गया है। $2 \pi \mathrm{C}$ के एक धन आवेश को छल्ले पर एक समान रूप से वितरित किया गया है तथा $30 \mathrm{pC}$ का दूसरा धन आवेश छल्ले के केन्द्र पर रखा गया है। छल्ले में तनाव . . . . . . .${N}$ है जबकि छल्ले का आकार अपरिवर्तित रहता है।
(गुरूत्व का प्रभाव नगण्य मान कर)
(यदि, $\frac{1}{4 \pi \epsilon_0}=9 \times 10^9 \mathrm{SI}$ मात्रक)
लम्बाई $l$ की दो द्रव्यमानहीन डोरियो द्वारा एक उभयनिष्ठ बिन्दु से दो एकसमान आवेशित गोले लटकाये गये है, जों कि प्रारम्भ में दूरी $d(d$ $ < < l)$ पर अपनें अन्योन्य विकषर्ण के कारण है। दोंनों गोलों से आवेश एक स्थिर दर से लीक होना प्रारम्भ करता है। इसके परिणाम स्वरूप आवेश एक दूसरे की ओर $v$ वेग से गति करना प्रारम्भ करते है। तब दोनों के बीच दूरी $x$ के फलन के रूप में
दो समान आवेश $Q$ परस्पर कुछ दूरी पर रखे हैं इनको मिलाने वाली रेखा के केन्द्र पर $q$ आवेश रखा गया है। तीनों आवेशों का निकाय सन्तुलन में होगा यदि $q$ का मान हो
$+8q$ तथा $ - 2q$ के दो बिन्दु आवेश क्रमश: $x = 0$ तथा $x = L$ पर स्थित हैं। $x$-अक्ष पर उस बिन्दु की स्थिति जहां इन आवेशों के कारण नेट विद्युत क्षेत्र शून्य है, क्या है