Two spheres $A$ and $B$ of radius $4\,cm$ and $6\,cm$ are given charges of $80\,\mu c$ and $40\,\mu c$ respectively. If they are connected by a fine wire, the amount of charge flowing from one to the other is
$20\,\mu C$ from $A$ to $B$
$16\,\mu C$ from $A$ to $B$
$32\,\mu C$ from $B$ to $A$
$32\,\mu C$ from $A$ to $B$
Two point charges $ + 3\,\mu C$ and $ + 8\,\mu C$ repel each other with a force of $40\,N$. If a charge of $ - 5\,\mu C$ is added to each of them, then the force between them will become....$N$
Two protons $A$ and $B$ are placed in space between plates of a parallel plate capacitor charged upto $V$ volts (See fig.) Forces on protons are ${F_A}$ and ${F_B}$, then
Two equal charges of magnitude $Q$ each are placed at a distance $d$ apart. Their electrostatic energy is $E$. A third charge $-Q / 2$ is brought midway between these two charges. The electrostatic energy of the system is now
A $10\,\mu C$ charge is divided into two parts and placed at $1\,cm$ distance so that the repulsive force between them is maximum. The charges of the two parts are :
Four charge $Q _1, Q _2, Q _3$, and $Q _4$, of same magnitude are fixed along the $x$ axis at $x =-2 a - a ,+ a$ and $+2 a$, respectively. A positive charge $q$ is placed on the positive $y$ axis at a distance $b > 0$. Four options of the signs of these charges are given in List-$I$ . The direction of the forces on the charge q is given in List-$II$ Match List-$1$ with List-$II$ and select the correct answer using the code given below the lists.$Image$
List-$I$ | List-$II$ |
$P.$ $\quad Q _1, Q _2, Q _3, Q _4$, all positive | $1.\quad$ $+ x$ |
$Q.$ $\quad Q_1, Q_2$ positive $Q_3, Q_4$ negative | $2.\quad$ $-x$ |
$R.$ $\quad Q_1, Q_4$ positive $Q_2, Q_3$ negative | $3.\quad$ $+ y$ |
$S.$ $\quad Q_1, Q_3$ positive $Q_2, Q_4$ negative | $4.\quad$ $-y$ |