Two point charges placed at a certain distance $r$ in air exert a force $F$ on each other. Then the distance $r'$ at which these charges will exert the same force in a medium of dielectric constant $k$ is given by
$r$
$r/k$
$r/\sqrt k $
$r\sqrt k $
The electrostatic force of interaction between an uniformly charged rod having total charge $Q$ and length $L$ and a point charge $q$ as shown in figure is
Two charges are at a distance $‘d’$ apart. If a copper plate (conducting medium) of thickness $\frac{d}{2}$ is placed between them, the effective force will be
An infinite number of point charges, each carrying $1 \,\mu C$ charge, are placed along the y-axis at $y=1\, m , 2\, m , 4 \,m , 8\, m \ldots \ldots \ldots \ldots \ldots$
The total force on a $1 \,C$ point charge, placed at the origin, is $x \times 10^{3}\, N$. The value of $x$, to the nearest integer, is .........
[Take $\left.\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \,Nm ^{2} / C ^{2}\right]$
Four charges are placed at the circumference of the dial of a clock as shown in figure. If the clock has only hour hand, then the resultant force on a positive charge $q_0$ placed at the centre, points in the direction which shows the time as