The diagrams depict four different charge distributions. All the charged particles are at same distance from origin $(i.e. OA = OB = OC = OD)$ $F_1$ , $F_2$ , $F_3$ and $F_4$ are the magnitude of electrostatic force experienced by a point charge $q_0$ kept at origin in figure $-1$ , figure $-2$ , figure $-3$ and figure $-4$ respectively. Choose the correct statement.

817-733

  • A

    $F_1 > F_2 > F_3 > F_4$

  • B

    $F_1 < F_2 < F_3 < F_4$

  • C

    $F_1 > F_3 > F_2 > F_4$

  • D

    $F_3 > F_1 > F_4 > F_2$

Similar Questions

Given below are three schematic graphs of potential energy $V(r)$ versus distance $r$ for three atomic particles : electron $\left(e^{-}\right)$, proton $\left(p^{+}\right)$and neutron $(n)$, in the presence of a nucleus at the origin $O$. The radius of the nucleus is $r_0$. The scale on the $V$-axis may not be the same for all figures. The correct pairing of each graph with the corresponding atomic particle is

  • [KVPY 2011]

Two particles $X $ and $Y$, of equal mass and with unequal positive charges, are free to move and are initially far away from each other. With $Y$ at rest, $X$ begins to move towards it with initial velocity $u$. After a long time, finally

Two identical metallic spheres $A$ and $B$ when placed at certain distance in air repel each other with a force of $F$. Another identical uncharged sphere $C$ is first placed in contact with $A$ and then in contact with $B$ and finally placed at midpoint between spheres $A$ and $B$. The force experienced by sphere $C$ will be.

  • [JEE MAIN 2022]

A charge ${q_1}$ exerts some force on a second charge ${q_2}$. If third charge ${q_3}$ is brought near, the force of ${q_1}$ exerted on ${q_2}$

If $g_E$ and $g_M$ are the accelerations due to gravity on the surfaces of the earth and the moon respectively and if Millikan's oil drop experiment could be performed on the two surfaces, one will find the ratio (electronic charge on the moon/electronic charge on the earth) to be

  • [AIEEE 2007]