$2a$ બાજુવાળા ચોરસની એક બાજુના છેડાઓ આગળ $'q'$ મૂલ્યનો બે ધન વિદ્યુતભારો મૂકેલા છે. બે સમાન મૂલ્યના ઋણ વિદ્યુતભારોને બીજા ખૂણાઓ પર મૂકેલા છે. સ્થિર સ્થિતિથી શરૂ કરીને જો વિદ્યુતભાર $Q$ એ બાજુના $1$ ના મધ્યબિંદુએથી ચોરસના કેન્દ્ર સુધી ગતિ કરે તો ચોરસના કેન્દ્ર આગળ તેની ગતિ ઊર્જા ........ છે.

  • [AIEEE 2011]
  • A

    $\frac{1}{{4\pi \,\,{ \varepsilon_{0}}}}\,\frac{{2qQ}}{a}\,\left( {1\,\, - \,\frac{1}{{\sqrt 5 }}} \right)$

  • B

    $zero$

  • C

    $\frac{1}{{4\pi \,\,{ \varepsilon_{0}}}}\,\frac{{2qQ}}{a}\,\,\left( {1\,\, + \,\,\frac{1}{{\sqrt 5 }}} \right)$

  • D

    $\frac{1}{{4\pi \,\,{\varepsilon_{0}}}}\,\frac{{2qQ}}{a}\,\left( {1\,\, - \,\frac{2}{{\sqrt 5 }}} \right)$

Similar Questions

$M$ દળનો વિદ્યુતભાર $q$ એ $q$ વિદ્યુતભારની આજુબાજુ સ્થિત વિદ્યુત આકર્ષણને લીધે પરિભ્રમણ કરે છે. તેની ગતિનો આવર્તકાળ..... સૂત્રની મદદથી આપી શકાય છે.

બે વિદ્યુતભારો $-q$ અને $+q$ અનુક્રમે $(0, 0, -a)$ અને $(0, 0, a)$ બિંદુઓએ રહેલા છે.

$(a)$ $(0, 0,z)$ અને $(x,y,0)$ બિંદુઓએ વિદ્યુતક્ષેત્ર કેટલું કેટલું છે?

$(b)$ સ્થિતિમાન, ઉગમબિંદુથી કોઈ બિંદુના અંતર $r$ પર, $r/a\,>\,>\,1$ હોય ત્યારે કેવી રીતે આધારિત છે તે દર્શાવતું સૂત્ર મેળવો.

$(c)$ એક નાના પરીક્ષણ વિદ્યુતભારને $x$ -અક્ષ પર $(5, 0, 0)$ બિંદુથી $(-7, 0, 0)$ બિંદુ સુધી લઈ જવામાં કેટલું કાર્ય થશે? જો પરીક્ષણ વિદ્યુતભારનો માર્ગ તે જ બે બિંદુઓ વચ્ચે $x$ -અક્ષ પર ન હોત તો જવાબમાં ફેર પડે?

$10\,m$ ત્રિજયા ધરાવતા વર્તુળના કેન્દ્ર પર $10$ યુનિટ વિદ્યુતભાર મૂકેલો છે. તો $1$ એકમ વિદ્યુતભારને વર્તુળના પરિઘ પર પરિભ્રમણ કરાવવા માટે ....... એકમ કાર્ય કરવું પડે

  • [AIIMS 2000]

ખોટું વિધાન શોધો.

આકૃતિ વિદ્યુત ચતુર્ઘવી $(Electric\, Quadrapole)$ તરીકે ઓળખાતી વિદ્યુતભારોની ગોઠવણ દર્શાવે છે. ચતુર્ધવીની અક્ષ પરના બિંદુ માટે, $r/a\,>\,>\,1$ માટે, સ્થિતિમાન $r$ પર કેવી રીતે આધારિત છે તે દર્શાવતું સૂત્ર મેળવો અને વિદ્યુત ડાયપોલ અને વિદ્યુત મોનોપોલ (એટલે કે એકલ વિદ્યુતભાર) માટેના આવા સૂત્રથી તમારું પરિણામ કેવી રીતે જુદું પડે છે તે જણાવો.