$+8q$ तथा $ - 2q$ के दो बिन्दु आवेश क्रमश: $x = 0$ तथा $x = L$ पर स्थित हैं। $x$-अक्ष पर उस बिन्दु की स्थिति जहां इन आवेशों के कारण नेट विद्युत क्षेत्र शून्य है, क्या है
$8 L$
$4 L$
$2 L$
$\frac{L}{4}$
तीन बिन्दु आवेश एक समबाहु त्रिभुज के शीर्षों पर रखे गये हैं। केवल स्थिर विद्युतीय बल को कार्यरत मानते हुये
दो समरूप चालक गोलों $A$ व $B$ पर समान आवेश हैं। प्रारम्भ में उनके बीच की दूरी उनके व्यासों से बहुत अधिक है तथा उनके बीच बल $F$ है। $C$ इसी तरह का एक तीसरा गोला है जो आवेशहीन है। गोले $C$ को पहले $A$ से स्पर्श कराते हैं, फिर $B$ से स्पर्श कराते हैं और फिर हटा देते हैं। इस प्रकार से $A$ और $B$ के बीच बल का मान होगा
किसी निश्चित आवेश $Q$ को दो भागों $q$ और $( Q - q )$ में विभाजित किया गया है। $Q$ तथा $q$ को किस प्रकार विभाजित किया जाना चाहिए ताकि $q$ और $( Q - q)$ को एक-दूसरे से किसी निश्चित दूरी पर रखे जाने पर ये परस्पर अधिकतम स्थिर विधुत प्रतिकर्षण बल का अनुभव करे?
लम्बाई $l$ की दो द्रव्यमानहीन डोरियो द्वारा एक उभयनिष्ठ बिन्दु से दो एकसमान आवेशित गोले लटकाये गये है, जों कि प्रारम्भ में दूरी $d(d$ $ < < l)$ पर अपनें अन्योन्य विकषर्ण के कारण है। दोंनों गोलों से आवेश एक स्थिर दर से लीक होना प्रारम्भ करता है। इसके परिणाम स्वरूप आवेश एक दूसरे की ओर $v$ वेग से गति करना प्रारम्भ करते है। तब दोनों के बीच दूरी $x$ के फलन के रूप में
यदि दो आवेशों के मध्य वायु के स्थान पर $K$ परावैद्युतांक वाला माध्यम भर दिया जाये तो उनके मध्य लगने वाला अधिकतम आकर्षण बल