Two objects are thrown up at angles of $45^{\circ}$ and $60^{\circ}$ respectively, with the horizontal. If both objects attain same vertical height, then the ratio of magnitude of velocities with which these are projected is .........
$\sqrt{\frac{5}{3}}$
$\sqrt{\frac{3}{5}}$
$\sqrt{\frac{2}{3}}$
$\sqrt{\frac{3}{2}}$
Two projectiles are thrown simultaneously in the same plane from the same point. If their velocities are $v_1$ and $v_2$ at angles $\theta _1$ and $\theta_2$ respectively from the horizontal, then answer the following question
If $v_1\,\,sin\,\,\theta _1 = v_2\,\,sin\,\,\theta _2$, then choose the incorrect statement
A particle $A$ is projected vertically upwards. Another identical particle $B$ is projected at an angle of $45^o $ . Both reach the same height. The ratio of the initial kinetic energy of $A$ to that of $B$ is
Two bodies are thrown up at angles of $45^o$ and $60^o$, respectively, with the horizontal. If both bodies attain same vertical height, then the ratio of velocities with which these are thrown is
Ratio between maximum range and square of time of flight in projectile motion is
A particle is projected from ground with velocity $u$ at angle $\theta$ from horizontal. Match the following two columns.
Column $I$ | Column $II$ |
$(A)$ Average velocity between initial and final points | $(p)$ $u \sin \theta$ |
$(B)$ Change in velocity between initial and final points | $(q)$ $u \cos \theta$ |
$(C)$ Change in velocity between initial and final points | $(r)$ Zero |
$(D)$ Average velocity between initial and highest points | $(s)$ None of the above |