Two long current carrying conductors are placed parallel to each other at a distance of $8 \,cm$ between them. The magnitude of magnetic field produced at mid-point between the two conductors due to current flowing in them is $300 \,\mu T$. The equal current flowing in the two conductors is ...............
$30 \,A$ in the same direction
$30 \,A$ in the opposite direction
$60 \,A$ in the opposite direction
$300 \,A$ in the opposite direction
Two parallel wires of length $9\, m$ each are separated by a distance $0.15\, m$. If they carry equal currents in the same direction and exerts a total force of $30 \times 10^{-7} \,N$ on each other, then the value of current must be........$amp$
A straight wire of length $0.5\, metre$ and carrying a current of $1.2\, ampere$ placed in a uniform magnetic field of induction $2\, Tesla$. The magnetic field is perpendicular to the length of the wire. The force on the wire is.......$N$
A current of $5$ $ampere$ is flowing in a wire of length $1.5$ $metres$. A force of $7.5\, N$ acts on it when it is placed in a uniform magnetic field of $2\, Tesla$. The angle between the magnetic field and the direction of the current is......$^o$
Write formula for moving charge $\mathrm{q}$ in magnetic field.
The magnetic field existing in a region is given by $\overrightarrow{\mathrm{B}}=0.2(1+2 \mathrm{x}) \hat{\mathrm{k} T}$. A square loop of edge $50 \mathrm{~cm}$ carrying $0.5 \mathrm{~A}$ current is placed in $x-y$ plane with its edges parallel to the $x-y$ axes, as shown in figure. The magnitude of the net magnetic force experienced by the loop is___________. $\mathrm{mN}$.