The magnetic field existing in a region is given by $\overrightarrow{\mathrm{B}}=0.2(1+2 \mathrm{x}) \hat{\mathrm{k} T}$. A square loop of edge $50 \mathrm{~cm}$ carrying $0.5 \mathrm{~A}$ current is placed in $x-y$ plane with its edges parallel to the $x-y$ axes, as shown in figure. The magnitude of the net magnetic force experienced by the loop is___________. $\mathrm{mN}$.
$15$
$40$
$50$
$65$
Three long, straight and parallel wires carrying currents are arranged as shown in the figure. The wire $C$ which carries a current of $5.0\, amp$ is so placed that it experiences no force. The distance of wire $C$ from wire $D$ is then
A straight rod of mass $m$ and length $L$ is suspended from the identical spring as shown in the figure. The spring stretched by a distance of $x_0$ due to the weight of the wire. The circuit has total resistance $R\Omega$ . When the magnetic field perpendicular to the plane of the paper is switched on, springs are observed to extend further by the same distance. The magnetic field strength is
There long straight wires $A$, $B$ and $C$ are carrying current as shown figure. Then the resultant force on $B$ is directed .....
Three long, straight and parallel wires carrying currents are arranged as shown in figure. The force experienced by $10\, cm$ length of wire $Q$ is
A $3.0\; cm$ wire carrying a current of $10 \;A$ is placed inside a solenoid perpendicular to its axis. The magnetic field inside the solenoid is given to be $0.27\; T$. What is the magnetic force on the wire?