Two free parallel wires carrying currents in opposite direction
Attract each other
Repel each other
Neither attract nor repel
Get rotated to be perpendicular to each other
What is the net force on the square coil
A power line lies along the east-west direction and carries a current of $10\, ampere$. The force per metre due to the earth's magnetic field of ${10^{ - 4}}\,tesla$ is
Two straight parallel wires, both carrying $10$ $ampere$ in the same direction attract each other with a force of $1 \times {10^{ - 3}}\,N$. If both currents are doubled, the force of attraction will be
A square of side $2.0\,m$ is placed in a uniform magnetic field $B = 2.0\, T$ in a direction perpendicular to the plane of the square inwards. Equal current, $i = 3.0\, A$ is flowing in the direction shown in figure. Find the magnitude of magnetic force on the loop
A large current carrying plate is kept along $y-z$ plane with $k$ $amp$ current per unit length in the $+ve$ $y$ direction. Find the net force on the semi cricular current carrying looplying in the $x-y$ plane. Radius of loop is $R$, current is $i$ and centre is at $(d,0, 0)$ where $(d > R)$