$3\,N$ तथा $2 \,N$ परिमाण के दो बल कोण पर इस प्रकार कार्यरत है, कि उनका परिणामी $R$ है। यदि प्रथम बल को $6\,N$ तक बढ़ा दिया जाये, तो परिणामी बल $2R$ हो जाता है। का मान....... $^o$ है

  • A

    $30$

  • B

    $60$

  • C

    $90$

  • D

    $120$

Similar Questions

कथन $I$ - दो बल $(\overrightarrow{ P }+\overrightarrow{ Q })$ तथा $(\overrightarrow{ P }-\overrightarrow{ Q })$ जहाँ $\overrightarrow{ P } \perp \overrightarrow{ Q }$, जब एक दूसरे से $\theta_{1}$ कोण पर लगते हैं, तो परिणामी का परिमाण $\sqrt{3\left( P ^{2}+ Q ^{2}\right)}$ होता है तथा जब $\theta_{2}$ कोण पर लगते है, तो परिणामी का परिमाण $\sqrt{2\left( P ^{2}+ Q ^{2}\right)}$ होता है। यह तभी सम्भव होता है जब $\theta_{1}<\theta_{2}$ है।
कथन $II$ - उपयुर्क्त दी गयी दशा में $\theta_{1}=60^{\circ}$ तथा $\theta_{2}=90^{\circ}$ उपर्युक्त कथनों के अवलोकन में, नीचे दिए गये विकल्पों से उपयुक्त उत्तर चुनिए।

  • [JEE MAIN 2021]

चित्रानुसार

सदिश $\overrightarrow{ A }$ और $\overrightarrow{ B } .$ इस प्रकार हैं कि $|\overrightarrow{ A }+\overrightarrow{ B }|=|\overrightarrow{ A }-\overrightarrow{ B }|$ इन दो सदिशों के बीच का कोण है

  • [AIIMS 2016]

दो बलों ${F_1}$ व ${F_2}$ का सदिश योग ${F_3}$ के तुल्य है, इसका चित्रण निम्न में किस चित्र में किया गया है

दिये गये दो सदिशों के परिणामी के अधिकतम तथा न्यूनतम परिमाण क्रमश: $17$ तथा $7$ इकाई हैं। यदि ये दोनों सदिश परस्पर लम्बवत् हैं। तब इनके परिणामी का परिमाण होगा