दो न्याय पासे फेंके जाते है। उनमें प्राप्त अंको को $\lambda$ तथा $\mu$ लेकर रैखिक समीकरण निकाय $x+y+z=5$ , $x+2 y+3 z=\mu$ , $x+3 y+\lambda z=1$ बनाया जाता है। यदि इस निकाय का अद्वितीय हल होने की प्रायिकता $p$ है तथा इस निकाय का कोई भी हल न होने की प्रायिकता $q$ है, तो -

  • [JEE MAIN 2021]
  • A

    $p =\frac{1}{6}$ तथा $q =\frac{1}{36}$

  • B

    $p =\frac{5}{6}$ तथा $q =\frac{5}{36}$

  • C

    $p =\frac{5}{6}$ तथा $q =\frac{1}{36}$

  • D

    $p =\frac{1}{6}$ तथा $q =\frac{5}{36}$

Similar Questions

माना कुछ $\alpha, \beta \in \mathbb{R}$ के लिये समीकरण निकाय $ \alpha x+2 y+z=1 $ $ 2 \alpha x+3 y+z=1 $ $ 3 x+\alpha y+2 z=\beta$ है। निम्न में से कौनसा सही नहीं है

  • [JEE MAIN 2023]

माना सभी $\mathrm{a} \in \mathrm{R}-\{0\}$, जिनके लिए रैखिक समीकरण निकाय $a x+2 a y-3 a z=1$

$ (2 a+1) x+(2 a+3) y+(a+1) z=2 $

$ (3 a+5) x+(a+5) y+(a+2) z=3$

का केवल एक हल है तथा अनंत हल है, के समुच्चय क्रमशः $S_1$ तथा $S_2$ है। तो

  • [JEE MAIN 2023]

यदि $\Delta_{ r }=\left|\begin{array}{ccc} r & 2 r -1 & 3 r -2 \\ \frac{ n }{2} & n -1 & a \\ \frac{1}{2} n ( n -1) & ( n -1)^{2} & \frac{1}{2}( n -1)(3 n +4)\end{array}\right|$ हैं, तो $\sum_{ r =1}^{ n -1} \Delta_{ r }$ का मान

  • [JEE MAIN 2014]

सारणिकों का प्रयोग करके $(3,1)$ और $(9,3)$ को मिलाने वाली रेखा का समीकरण ज्ञात कीजिए।

यदि $|A| $ तीसरे क्रम के वर्ग आव्यूह   $A$  के सारणिक के मान को निरुपित करता हो, तो $ |-2A|$=