બે પાસાઓ ફેંકવામાં આવે છે. ઘટનાઓ $A, B$ અને $C$ નીચે આપેલ છે.
$A :$ પહેલા પાસા ઉપર યુગ્મ સંખ્યા મળે છે.
$B:$ પહેલા પાસા ઉપર અયુગ્મ સંખ્યા મળે છે.
$C :$ પાસાઓ ઉપર મળતી સંખ્યાઓનો સરવાળો $5$ કે $5$ થી ઓછો છે.
$A$ અને $C$ પરસ્પર નિવારક છે.
$A=\left\{\begin{array}{l}(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3) \\ (4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\end{array}\right\}$
$B=\left\{\begin{array}{l}(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3), \\ (3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)\end{array}\right\}$
$C=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)\}$
It is observed that $A \cap C=\{(2,1),(2,2),(2,3),(4,1)\} \neq \phi$
$\therefore A$ and $C$ are not mutually exclusive.
Thus, the given statement is false.
જો કોઈ ઘટના $A$ ની સંભાવના $\frac{2}{11}$ હોય, તો ઘટના $A-$ નહિ' ની સંભાવના શોધો.
બે પાસાઓ ફેંકવામાં આવે છે. ઘટનાઓ $A, B$ અને $C$ નીચે આપેલ છે.
$A :$ પહેલા પાસા ઉપર યુગ્મ સંખ્યા મળે છે.
$B:$ પહેલા પાસા ઉપર અયુગ્મ સંખ્યા મળે છે.
$C :$ પાસાઓ ઉપર મળતી સંખ્યાઓનો સરવાળો $5$ કે $5$ થી ઓછો છે.
નીચે આપેલ ઘટનાઓ વર્ણવો : $A'$
ધારોકે નિર્દશ અંતરાલ $[0,60]$ માંથી યાદચ્છીક રીતે પસંદ કરેલ બે વાસ્તવિક સંખ્યાઓનો નિરપેક્ષ તફાવત $a, a > 0$ કે તેથી નાનો હોય તે ઘટના $A$ છે. જે $P ( A )=\frac{11}{36}$ હોય, તો $a=..........$.
ધારો કે ગોળાઓના એક ઢગલામાંથી $3$ ગોળા યાદચ્છિક રીતે કાઢવામાં આવે છે. પ્રત્યેક ગોળાની ચકાસણી કરીને તેને ખરાબ $(D)$ અથવા સારી $(N)$ માં વર્ગીકરણ કરાય છે. આ ઘટનાની નિદર્શાવકાશ જણાવો
બે પાસાઓ ફેંકવામાં આવે છે. ઘટનાઓ $A, B$ અને $C$ નીચે આપેલ છે.
$A :$ પહેલા પાસા ઉપર યુગ્મ સંખ્યા મળે છે.
$B:$ પહેલા પાસા ઉપર અયુગ્મ સંખ્યા મળે છે.
$C :$ પાસાઓ ઉપર મળતી સંખ્યાઓનો સરવાળો $5$ કે $5$ થી ઓછો છે.
નીચે આપેલ ઘટનાઓ વર્ણવો : $A$ અને $B$