Two dice are thrown. The events $A,\, B$ and $C$ are as follows:
$A:$ getting an even number on the first die.
$B:$ getting an odd number on the first die.
$C:$ getting the sum of the numbers on the dice $\leq 5$
State true or false $:$ (give reason for your answer)
Statement : $A$ and $C$ are mutually exclusive
$A=\left\{\begin{array}{l}(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3) \\ (4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\end{array}\right\}$
$B=\left\{\begin{array}{l}(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3), \\ (3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)\end{array}\right\}$
$C=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)\}$
It is observed that $A \cap C=\{(2,1),(2,2),(2,3),(4,1)\} \neq \phi$
$\therefore A$ and $C$ are not mutually exclusive.
Thus, the given statement is false.
One card is drawn from a well shuffled deck of $52$ cards. If each outcome is equally likely, calculate the probability that the card will be a black card (i.e., a club or, a spade)
A bag contains $3$ white and $2$ black balls and another bag contains $2$ white and $4 $ black balls. A ball is picked up randomly. The probability of its being black is
A coin is tossed. If it shows head, we draw a ball from a bag consisting of $3$ blue and $4$ white balls; if it shows tail we throw a die. Describe the sample space of this experiment.
Five horses are in a race. $Mr. \,A$ selects two of the horses at random and bets on them. The probability that $Mr.\, A$ selected the winning horse is
Out of $60 \%$ female and $40 \%$ male candidates appearing in an exam, $60\%$ candidates qualify it. The number of females qualifying the exam is twice the number of males qualifying it. A candidate is randomly chosen from the qualified candidates. The probability, that the chosen candidate is a female, is.