બે પાસાઓ ફેંકવામાં આવે છે. ઘટનાઓ $A, B$ અને $C$ નીચે આપેલ છે.

$A :$ પહેલા પાસા ઉપર યુગ્મ સંખ્યા મળે છે.

$B:$ પહેલા પાસા ઉપર અયુગ્મ સંખ્યા મળે છે.

$C :$ પાસાઓ ઉપર મળતી સંખ્યાઓનો સરવાળો $5$ કે $5$ થી ઓછો છે.

નીચે આપેલ ઘટનાઓ વર્ણવો : $A$ અને $B$ 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

When two dice are thrown, the sample space is given by

$s =\{(x, y): x, y=1,2,3,4,5,6\}$
$=\left\{\begin{array}{l}(1,1),(1,2),(1,3),(1,4),(1,5),(1,6) \\ (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) \\ (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) \\ (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) \\ (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) \\ (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\end{array}\right]$

Accordingly,

$A =\left\{\begin{array}{l}(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3) \\ (4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\end{array}\right\}$

$B =\left\{\begin{array}{l}(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3) \\ (3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)\end{array}\right\}$

$C=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)\}$

$A$ and $B=A \cap B=\phi $

Similar Questions

એક પાસાને ફેકવાના પ્ર્યોગનો વિચાર કરીએ. એક અવિભાજય પૂર્ણાક મળે તેને ઘટના $A$ અને એક અયુગ્મ પૂર્ણાક પ્રાપ્ત થાય તેને ધટના $B$ તરીકે દર્શાવવામાં આવેલ છે. આપેલ ધટનાઓ $A$ અને $B$  નો ગણ દર્શાવો.

એક સમતોલ સિક્કાને ચાર-વાર ઉછાળવામાં આવે છે અને એક વ્યક્તિ પ્રત્યેક છાપ $(H)$ પર $Rs. 1$ જીતે છે અને પ્રત્યેક કાંટા $(T) $ પ૨ $Rs.1.50$ હારે છે. આ પ્રયોગનાં નિદર્શાવકાશ પરથી શોધો કે ચાર વાર સિક્કાને ઉછાળ્યા પછી તે કેટલી ૨કમ પ્રાપ્ત કરી શકે છે તથા આ પ્રત્યેક રકમની સંભાવના શોધો. 

ધારો કે, $A = {1, 3, 5, 7, 9}, B = {2, 4, 6, 8}.$ કાર્ટેંઝિયન ગુણાકાર $A × B$ ની ક્રમિક જોડ યાર્દચ્છિક રીતે પસંદ કરતાં $a + b = 9$ થાય. તેની સંભાવના …….. છે.

એક પાસાની બે બાજુઓમાંથી પ્રત્યેક પર સંખ્યા $“1”$ દર્શાવેલ છે, ત્રણ બાજુઓમાં પ્રત્યેક પર સંખ્યા $“2”$ દર્શાવેલ છે અને એક બાજુ પર સંખ્યા $“3”$ છે. જો આ પાસાને એકવાર ફેંકવામાં આવે તો નીચે આપેલ શોધો : $P($ $3$ નહિ)

બે પાસાને ઉછાળવામાં આવે છે . જો બંને પાસા પરના અંકો  $1,2,3,5,7$ અને $11$ હોય તો બંને પાસા ઉપર આવતા અંકોનો સરવાળો $8$ કે તેના કરતાં ઓછો થાય તેની સંભાવના મેળવો.

  • [JEE MAIN 2021]