બે પાસાઓ ફેંકવામાં આવે છે. ઘટનાઓ $A, B$ અને $C$ નીચે આપેલ છે.
$A :$ પહેલા પાસા ઉપર યુગ્મ સંખ્યા મળે છે.
$B:$ પહેલા પાસા ઉપર અયુગ્મ સંખ્યા મળે છે.
$C :$ પાસાઓ ઉપર મળતી સંખ્યાઓનો સરવાળો $5$ કે $5$ થી ઓછો છે.
$A$ અને $B$ પરસ્પર નિવારક અને નિઃશેષ છે.
$A=\left\{\begin{array}{l}(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3) \\ (4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\end{array}\right\}$
$B=\left\{\begin{array}{l}(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3), \\ (3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)\end{array}\right\}$
$C=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)\}$
It is observed that $A \cap B=\phi$ and $A \cup B=S$
$\therefore A$ and $B$ are mutually exclusive and exhaustive.
Thus, the given statement is true.
પાસાઓની જોડને ફેંકવામાં આવે, તો પ્રત્યેક પાસાં પર યુગ્મ અવિભાજ્ય સંખ્યા મળે તેની સંભાવના .......... છે.
ત્રણ સિક્કા એકવાર ઉછાળવામાં આવે છે. નીચેની ઘટનાઓનું વર્ણન કરો :
પરસ્પર નિવારક અને નિઃશેષ ત્રણ ઘટનાઓ
નીચે દર્શાવેલ પ્રયોગ માટે નિદર્શાવકાશ દર્શાવો : એક પાસાને બે વાર ફેંકવામાં આવે છે.
જો બેગ $x$ માં ત્રણ સફેદ અને બે કાળા દડા છે અને બેગ $y$ માં બે સફેદ અને ચાર કાળા દડા છે.જો એક બેગમાંથી દડાની યાદ્રચ્છિક રીતે પસંદગી કરતાં તે સફેદ હોય તેની સંભાવના મેળવો.
જો જન્મેલ બાળક છોકરો છે કે છોકરી તે ક્રમમાં જાણવામાં આપણી રુચિ હોય તો તેનો નિદર્શાવકાશ શું થશે ?