Two dice are thrown. The events $A,\, B$ and $C$ are as follows:
$A:$ getting an even number on the first die.
$B:$ getting an odd number on the first die.
$C:$ getting the sum of the numbers on the dice $\leq 5$
State true or false $:$ (give reason for your answer)
Statement : $A$ and $B$ are mutually exclusive and exhaustive
$A=\left\{\begin{array}{l}(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3) \\ (4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\end{array}\right\}$
$B=\left\{\begin{array}{l}(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,3), \\ (3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)\end{array}\right\}$
$C=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)\}$
It is observed that $A \cap B=\phi$ and $A \cup B=S$
$\therefore A$ and $B$ are mutually exclusive and exhaustive.
Thus, the given statement is true.
A coin is tossed and a dice is rolled. The probability that the coin shows the head and the dice shows $6$ is
The probability of getting at least one tail in $4$ throws of a coin is
Three coins are tossed once. Find the probability of getting atmost two tails.
Let $A$ be a set of all $4 -$digit natural numbers whose exactly one digit is $7 .$ Then the probability that a randomly chosen element of $A$ leaves remainder $2$ when divided by $5$ is ..... .
Two integers are chosen at random and multiplied. The probability that the product is an even integer is